Harnessing Noise and Invisibles:
Micro-Signal Analytics for Healthcare
and Physiological Forensics

Min Wu
Media and Security Team (MAST)
ECE Department / UMIACS
University of Maryland, College Park
http://www.ece.umd.edu/~minwu/research.html

Include joint research with Wei-Hong Chuang, Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna, Chau-Wai Wong, Qiang Zhu, C-H. Fu, Xin Tian, Mingliang Chen, and Yuenan Li.

Micro-Signals for Forensics

- “Micro signal” is small in terms of:
 - Amplitude than dominating signals (by 1+ order of magnitude)
 - Topological scale

Micro-Signal Meets Health: Physiology Forensics

- Heart rate monitoring in home and fitness
 - Contact based: electrodes, chest belts, and finger clips.
 - Contact-free: more user-friendly, but challenging to design.

- Observation: face color changes in the same pace as heartbeat
 - Although naked eyes cannot see it
 - Prior work: (Verkruysse et al OptExp’08 etc.) “rest case” with little or small motions

- Challenging cases: videos with significant motions
 - Fitness/athletic training (running on treadmill, …); Driving;
 - Contact-free monitoring for children in special needs; Surveillance

Skin Model of Remote PPG (photo-plethysmogram)

PPG through pulse oximeter

- Optical sensing
- Instrument measuring (blood) volume change

![Diagram of skin model and light source](image)

Anatomical cross-section structure of human skin tissues and the specular and diffuse reflections captured by a RGB sensor when the skin is illuminated by a light source.

(Revised from [1])

“Seeing” Heart Rate in Motion: No Touch Needed

- **Original video frame**
- **Reference face**
- **Aligned face**
- **Green channel**

High-Res Motion Compensation & Face Alignm.

- Face color signal: by spatial averaging over Regions of Interest (ROI)
- Pre-processed signal is achieved by a suitable linear combination of three color channels
 - Detailed study by Philips Research on various ways of color combining

A Forensics Detour: Finding “Time + Location”

- When was the video actually shot? And where?
- Was the sound track captured at the same time as the picture? Or super-imposed afterward?
- Explore fingerprint influenced by power grid onto sensor recordings
Ubiquitous Forensic Fingerprints from Power Grid

- Electric Network Frequency (ENF): 50 or 60 Hz nominal
 - Change slightly due to demand-supply
 - Main trends consistent in same grid

Overcome ENF Aliasing: CMOS Rolling Shutter

- CMOS imaging sensors: Low cost; low power
- Rolling shutter in CMOS sensor: sequential row readout
 - Different rows exposed at different time
 - Often considered bad: distortions on fast moving scenes (see wiki)

Align Visual Streams using ENF Row Signals

- Video signal: combination of visual component and ENF component.
 - Estimate visual component
 - Subtract visual component
 - Take row averages as source signal
 - Frequency estimation from source signal

- Can we exploit row sampling to overcome ENF aliasing?

ENF matching result demonstrating similar variations in the ENF signal extracted from video and from power signal recorded in India
Synchronize Multiple Videos by Power Trace

- Align ENF estimated from rolling-shutter videos
- Hallway video with motion & auto brightness change.

- Lag by manual alignment: 60.80 sec

Synchronize Video by Intrinsic Power Trace

- Demo-1: With disappearing objects & different viewing angles
 - After synch by ENF in visual tracks

- Demo-2: Videos at different locations
 - After synch by ENF in audio tracks

Extraction Strategies of Micro Signal

- **Residue analysis**
 - Dominant signals disguise micro signals (overall lighting, motion, etc.)
 - Estimate and compensate dominant signals to reveal residues
 - “Detrending” takes domain knowledge & synergistic expertise for micro signal
 - Improve micro signal SNR

- **Statistical source separation:**
 - Apply ICA to isolate components
 - PCA or Singular Spectrum Analysis (SSA)

- **Physical model/properties help**
 - E.g. sinusoidal model in power sig. analytics

Return from Detour: “Seeing” Heart Rate in Motion

- See video at [https://youtu.be/9njZ1fBq26g]
- See video at [https://youtu.be/WVBD4srQduE]
Robust Tracking of Weak Noisy Traces

- Trace tracking in many applications
- Challenges: very noisy + weak traces
 - Very low SNR; strong interference from other sources
 - Varying, unforeseen distortions
 - Multiple frequencies of interest
 - Need a good general/universal method: esp. with limited instances to learn

Seam-Carving Inspired Weak-Trace Tracking

\[f^* = \arg\max_f \left(E(f) + \lambda P(f) \right), \quad \lambda > 0 \]

Experimental Result (HR using remote PPG)

- Fitness pulse signal using video-based rPPG method

Experimental Result (ENF from audio)

- Audio ENF data
 - 27 pairs of 1-hour power grid signal and audio signal from a variety of locations in North America (Nominal ENF: 60 Hz)
 - Recorder: Olympus Voice Recorder WS-700M (\(f_s = 44.1 \) kHz)

Performance of various methods on ENF data

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE in Hz</th>
<th>Pearson’s (\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QL</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Particle Filter</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>YAAPT</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>AMTC</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ENF data: 03:03am to 04:03am PT, 20121031 San Diego, CA
Pushing the Envelope:

Can we “see” ECG?

An Enabling Step ...

Relation of ECG vs. PPG?

- Measure electric potentials
- Optical sensing of blood volume change

Typical Pattern: Waveforms & Spectrograms

Promising or Skeptical: Cardio from Wearables?

- **Wearables** for heart rate monitoring in home & fitness
 - Chest belt (related to 1-lead ECG) ~ gold standard in sports
 - Most wearables measure PPG: Finger clips (oximeter);
 Watches/bracelet (Apple Watch, Samsung Galaxy, FitBit, etc.)

- **ECG vs. PPG** (photo-plethysmogram)

<table>
<thead>
<tr>
<th></th>
<th>ECG</th>
<th>PPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>What does it measure?</td>
<td>Electrical potential signal of cardio activities</td>
<td>Optical measurement of the cardio-induced blood volume changes</td>
</tr>
<tr>
<td>Accuracy & knowledge base</td>
<td>+ Clinical gold standard; Rich knowledge base</td>
<td>- Indirect to cardio function; Limited cardio knowledge from PPG directly. Prone to motion artifacts due to loose contact etc.</td>
</tr>
<tr>
<td>Comfort</td>
<td>- Restrictive on user activities and uncomfortable</td>
<td>+ More user friendly; possible to be contact-free by video etc.</td>
</tr>
<tr>
<td>Cont’s long-term use</td>
<td>- Specialized equipment (Holter, Zio etc.; skin irritation w/ adhesive wear</td>
<td>+ Long-term wear possible w/o constant user intervention</td>
</tr>
</tbody>
</table>

Can we obtain ECG from PPG?

- **Benefits** if this could be done:
 - Enable user-friendly, low-cost, long-term & continuous cardio monitoring
 - Facilitate studies on patients w/ special needs (autism, etc.)
 - Leverage rich ECG knowledge and “transfer” it to build knowledge base for PPG and data from wearables

- **Two major research issues**
 1. Can we infer ECG from a clean PPG? **← most fundamental**
 - Patient independent (inference for a group of patients, e.g. by age, gender etc.) vs. Patient specific (refine with specific patient info.)
 - Role of disease types on the inference model?
 2. Can we clean up PPG due to movement etc.?**
 - Leverage multiple sensors (e.g. accelerometers)

Support & promote public health and more

not just blackbox data-driven AI but medically explainable
Clean up PPG in Prep for Signal Analytics

- Combined proc. from noisy PPG + accelerometer signals
 - SP Cup 2015 Heart rate (Zhang@Samsung; Schack et al.@TU Darmstadt)
- Joint adaptive sp + robust trace tracking (on UMD E4 Dataset)
 - Improved heart rate accuracy than Empatica E4 under motion
 - Compared to gold standard for HR in fitness (Polar cheststrap)

Accuracy Comparison of PPG Clean-up (UMD E4 Dataset)

- Heart rate estimates: 22 sessions total of 5 subjects; jump, walk, run, row, still
- Pearson correlation (w.r.t. chest-strap ref.); Bland-Altman plot 95%

Can we obtain ECG from PPG?

- Benefits if this could be done:
 - Enable user-friendly, low-cost, long-term & continuous cardio monitoring
 - Facilitate studies on patients w/ special needs (autism, etc.)
 - Leverage rich ECG knowledge and “transfer” it to build knowledge base for PPG and data from wearables
- Two major research issues
 1. Can we infer ECG from a clean PPG? \[\rightarrow\text{most fundamental}\]
 - Patient independent (inference for a group of patients, e.g. by age, gender etc.) vs. Patient specific (refine with specific patient info.)
 - Role of disease types on the inference model?
 2. Can we clean up PPG due to movement etc.? \[\rightarrow\text{Can combine the two steps with model+data supported learning}\]

PPG to ECG: Methodology At-a-Glance

- A. Reconstruct lower-freq. spectrum via inverse filtering type of operation
- B. Reconstruct extended spectrum by exploiting correlation/sig. properties

Support & promote public health and more not just blackbox data-driven AI but medically explainable
A Cycle-level Learning Framework

Framework and Generalization:

- The mapping f can be a linear transform (first tries, BHI’19), and generalized to nonlinear mappings or transforms (e.g., learnt from data via neural networks).
- The analysis mechanism can be DCT (BHI’19) or other mapping/transform, e.g. learned with f via dictionary learning or neural networks.
- By further exploring (big) data with detailed patient profiles, a more complex model may be learned based on biomedical, statistical, and physical meanings of the signals to better capture the relation of PPG and ECG.

Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

Subject Dependent (SD) vs. Independent (SI) Model

- SD: training and testing on different data from the same subject
- SI: one model trained with all training data from multiple subjects

SI is more challenging to be accurate; may explore by age, gender, etc.

PPG-to-ECG example (on CapnoBase)
- 4 years old, weight 18 kg
- Pearson’s correlation coeff. of inferred ECG from PPG:
 - 0.991 in SD mode
 - 0.883 in SI mode

See BHI’19 paper, slides at <http://sigport.org/4558>

DCT Based vs. Joint Dictionary Learning

- **DCT**: near-optimal data-independent for highly correlated data => focus on learning PPG-ECG relations
- **Dictionary learning w/ improved inference**
 - Jointly learn ECG/PPG representations & their relation from data, esp. useful for disease patients

Mini-MIMIC Database: ICU Patient Profile

- **Total # of cardiac patients**: 80
 - Atrial fibrillation: 5
 - Myocardial infarction: 17
 - Cardiac arrest: 3
 - Congestive heart failure: 17
 - Hypotension/hypertension: 10
 - Coronary artery disease: 28

- **Total # of non-cardiac patients**: 77
 - Sepsis: 18
 - Pneumonia: 13
 - Gastrointestinal bleed: 21
 - Diabetic ketoacidosis: 6
 - Altered mental status: 19
Prelim Results: Cardio Disease Classification

- Confusion matrices & classification accuracy of SVM (w/ polynomial kernel) on 3 types of data: original ECG vs. inferred ECG vs. original PPG

<table>
<thead>
<tr>
<th>Class</th>
<th>Original ECG (reference)</th>
<th>ECG inferred from PPG (proposed idea)</th>
<th>Original PPG (direct learning from wearables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>STI</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>HYPO</td>
<td>0.0%</td>
<td>0.0%</td>
<td>96.2%</td>
</tr>
<tr>
<td>CAD</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Classification Accuracy:
- Original ECG (reference): 99.6%
- ECG inferred from PPG (proposed idea): 99.3%
- Original PPG (direct learning from wearables): 76.6%

Promising "Explainable AI" benefit from our inference to learn by physical model & biomedical knowledge + data than PPG data alone

Recap: Exploiting Micro-Signals

- Harnessing “Micro Signals” for health analytics and physiological forensics
- Cross-cutting Synergy of multiple SPS tech areas
- Benefits and cautions:
 - Physio. w/o needing active user involvement
 - Privacy implications: e.g. in surveillance

- Outlook:
 - Promising use of physiological micro-signals in detecting fake media

Include joint work with colleagues, graduate & REU students

Wei-Hong Chuang, Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna; Chau-Wai Wong, Qiang Zhu, Chang-Hong Fu, Xin Tian, Mingliang Chen, Yuenan Li, J. Su, Michael Luo (MERIT REU), Maggie Xiong (REU), J. Luo (REU).